Copper-dependent interaction of glutaredoxin with the N termini of the copper-ATPases (ATP7A and ATP7B) defective in Menkes and Wilson diseases.

نویسندگان

  • Chris M Lim
  • Michael A Cater
  • Julian F B Mercer
  • Sharon La Fontaine
چکیده

The P-type ATPases affected in Menkes and Wilson diseases, ATP7A and ATP7B, respectively, are key copper transporters that regulate copper homeostasis. The N termini of these proteins are critical in regulating their function and activity, and contain six copper-binding motifs MxCxxC. In this study, we describe the identification of glutaredoxin (GRX1) as an interacting partner of both ATP7A and ATP7B, confirmed by yeast two-hybrid technology and by co-immunoprecipitation from mammalian cells. The interaction required the presence of copper and intact metal-binding motifs. In addition, the interaction was related to the number of metal-binding domains available. GRX1 catalyses the reduction of disulphide bridges and reverses the glutathionylation of proteins to regulate and/or protect protein activity. We propose that GRX1 is essential for ATPase function and catalyses either the reduction of intramolecular disulphide bonds or the deglutathionylation of the cysteine residues within the CxxC motifs to facilitate copper-binding for subsequent transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The copper-transporting ATPases, menkes and wilson disease proteins, have distinct roles in adult and developing cerebellum.

Copper is essential for brain metabolism, serving as a cofactor to superoxide dismutase, dopamine-beta-hydroxylase, amyloid precursor protein, ceruloplasmin, and other proteins required for normal brain function. The copper-transporting ATPases ATP7A and ATP7B play a central role in distribution of copper in the central nervous system; genetic mutations in ATP7A and ATP7B lead to severe neurode...

متن کامل

Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes.

The trace metal copper is essential for a variety of biological processes, but extremely toxic when present in excessive amounts. Therefore, concentrations of this metal in the body are kept under tight control. Central regulators of cellular copper metabolism are the copper-transporting P-type ATPases ATP7A and ATP7B. Mutations in ATP7A or ATP7B disrupt the homeostatic copper balance, resultin...

متن کامل

Comparative Features of Copper ATPases ATP7A and ATP7B Heterologously Expressed in COS-1 Cells

ATP7A and ATP7B are P-type ATPases required for copper homeostasis and involved in the etiology of Menkes and Wilson diseases. We used heterologous expression of ATP7A or ATP7B in COS-1 cells infected with adenovirus vectors to characterize differential features pertinent to each protein expressed in the same mammalian cell type, rather than to extrinsic factors related to different cells susta...

متن کامل

Function and regulation of human copper-transporting ATPases.

Copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B are evolutionarily conserved polytopic membrane proteins with essential roles in human physiology. The Cu-ATPases are expressed in most tissues, and their transport activity is crucial for central nervous system development, liver function, connective tissue formation, and many other physiological processes. The loss of ATP7A or ATP7B fun...

متن کامل

Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis

Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 348 2  شماره 

صفحات  -

تاریخ انتشار 2006